549 research outputs found

    Quantum discord in spin-cluster materials

    Full text link
    The total quantum correlation (discord) in Heisenberg dimers is expressed via the spin-spin correlation function, internal energy, specific heat or magnetic susceptibility. This allows one to indirectly measure the discord through neutron scattering, as well as calorimetric or magnetometric experiments. Using the available experimental data, we found the discord for a number of binuclear Heisenberg substances with both antiferro- and ferromagnetic interactions. For the dimerized antiferromagnet copper nitrate Cu(NO_3)_2*2.5H_2O, the three independent experimental methods named above lead to a discord of approximately 0.2-0.3 bit/dimer at a temperature of 4 K. We also determined the temperature behavior of discord for hydrated and anhydrous copper acetates, as well as for the ferromagnetic binuclear copper acetate complex [Cu_2L(OAc)]*6H_2O, where L is a ligand.Comment: 7 pages, 6 figure

    Stacking boundaries and transport in bilayer graphene

    Get PDF
    Pristine bilayer graphene behaves in some instances as an insulator with a transport gap of a few meV. This behaviour has been interpreted as the result of an intrinsic electronic instability induced by many-body correlations. Intriguingly, however, some samples of similar mobility exhibit good metallic properties, with a minimal conductivity of the order of 2e2/h2e^2/h. Here we propose an explanation for this dichotomy, which is unrelated to electron interactions and based instead on the reversible formation of boundaries between stacking domains (`solitons'). We argue, using a numerical analysis, that the hallmark features of the previously inferred many-body insulating state can be explained by scattering on boundaries between domains with different stacking order (AB and BA). We furthermore present experimental evidence, reinforcing our interpretation, of reversible switching between a metallic and an insulating regime in suspended bilayers when subjected to thermal cycling or high current annealing.Comment: 13 pages, 15 figures. Published version (Nano Letters

    On Multiparticle Entanglement via Resonant Interaction between Light and atomic Ensembles

    Full text link
    Multiparticle entangled states generated via interaction between narrow-band light and an ensemble of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical schemes for preparing entangled states of atomic ensembles by projective measurement are described.Comment: 11 pages, 1 figure, revtex

    Conductance of p-n-p graphene structures with 'air-bridge' top gates

    Full text link
    We have fabricated graphene devices with a top gate separated from the graphene layer by an air gap--a design which does not decrease the mobility of charge carriers under the gate. This gate is used to realise p-n-p structures where the conducting properties of chiral carriers are studied. The band profile of the structures is calculated taking into account the specifics of the graphene density of states and is used to find the resistance of the p-n junctions expected for chiral carriers. We show that ballistic p-n junctions have larger resistance than diffusive ones. This is caused by suppressed transmission of chiral carriers at angles away from the normal to the junction.Comment: to be published in Nano Letter

    Giant Spin-Hall Effect induced by Zeeman Interaction in Graphene

    Full text link
    We propose a new approach to generate and detect spin currents in graphene, based on a large spin-Hall response arising near the neutrality point in the presence of external magnetic field. Spin currents result from the imbalance of the Hall resistivity for the spin-up and spin-down carriers induced by Zeeman interaction, and do not involve spin-orbit interaction. Large values of the spin-Hall response achievable in moderate magnetic fields produced by on-chip sources, and up to room temperature, make the effect viable for spintronics applications

    Quantum transport thermometry for electrons in graphene

    Get PDF
    We propose a method of measuring the electron temperature TeT_e in mesoscopic conductors and demonstrate experimentally its applicability to micron-size graphene devices in the linear-response regime (TeTT_e\approx T, the bath temperature). The method can be {especially useful} in case of overheating, Te>TT_e>T. It is based on analysis of the correlation function of mesoscopic conductance fluctuations. Although the fluctuation amplitude strongly depends on the details of electron scattering in graphene, we show that TeT_e extracted from the correlation function is insensitive to these details.Comment: 4 pages, 4 figures; final version, as publishe

    On the Mass Eigenstate Composition of the 8B Neutrinos from the Sun

    Get PDF
    The present data of gallium experiments provide indirectly the only experimental limit on the fraction of ν2\nu_2 mass eigenstate for the 8^8B neutrinos from the Sun. However, if to use the experimental data alone, the fraction of ν2\nu_2 and, consequently, sin2θsolsin^2\theta_{sol} still is allowed to be varied within a rather broad range. The further experimental efforts are needed to clear this point.Comment: 13 pages, 1 figure, 1 table. Corrected version, published in JCAP04(2007)00
    corecore